Спектральный анализ. История и принцип действия.


Петухов Всеволод

В 1814 году немецкий оптик Йозеф фон Фраунгофер (1787 – 1826) испытывал превосходные призмы собственного изготовления. Пропуская луч света сначала через щель, а затем через трехгранные стеклянные призмы, Фраунгофер получил солнечный спектр, пересекаемый рядом темных линий. Он насчитал около шестисот таких линий и тщательно зафиксировал их положение в спектре.

В конце 50-х гг. XIX Немецкий физик Густав Роберт Кирхгоф (1824 - 1887) и его коллега химик Роберт Вильгельм Бунзен (1811- 1899) обнаружили, что эти линии содержат поразительную информацию. В качестве источника света эти ученые пользовались изобретенной Бунзеном горелкой – той самой бунзеновской горелкой, которая известна любому начинающему химику. Сгорающая в горелке смесь газа и воздуха дает почти бесцветное пламя с достаточно высокой температурой. Когда Кирхгоф помещал в пламя горелки крупицы различных химических веществ, оно окрашивалось в разные цвета. Свет от такого пламени, пропущенный через призму, давал не сплошную полосу, а отдельные яркие линии.

Кирхгоф выяснил, что для каждого элемента, разогретого в пламени горелки, характерен свой спектр. Таким образом, снимая спектр излучения химического элемента, Кирхгоф как бы снимал «отпечатки пальцев» такого элемента. Получив такую информацию, можно было решить и обратную задачу: опознать элемент, входящий в состав неизвестного вещества. Прибор, используемый для определения элементов описанным способом, получил название спектроскоп.

Сегодня мы уже знаем, что излучение света атомами обусловлено определенными явлениями, связанными с их структурой. В атомах каждого элемента эти явления протекают по-своему. Следовательно, каждый элемент излучает свет только определенных, характерных для него, длин волн.

При облучении светом элементов в парообразном состоянии наблюдается обратная картина: свет определенных длин волн не излучается, а поглощается. Более того, поскольку как поглощение, так и излучение света обусловлено одними и теми же процессами, протекающими в противоположных направлениях, то пары поглощают излучение с точно теми же длинами волн, какие наблюдаются в других условиях при испускании излучения.

Представлялось весьма вероятным, что темные линии в спектре солнца обусловлены тем, что испускаемый раскаленной солнечной поверхностью свет поглощают газы более холодной солнечной атмосферы. Пары веществ (химических элементов), находящиеся в атмосфере Солнца, также поглощают свет определенных длин волн, и по положению возникающих темных линий в спектре можно судить, какие элементы находятся в атмосфере Солнца.

Именно спектроскоп позволил доказать, что Солнце (а также звезды и межзвездный газ) состоит из элементов, полностью идентичных земным. Этот вывод окончательно разбил утверждение Аристотеля, считавшего, что небесные тела состоят из веществ, отличающихся по своей природе от веществ, составляющих Землю.

С изобретением спектроскопа химики получили новый эффективный способ обнаружения элементов. Так, например, если в спектре раскаленного минерала содержатся линии, не принадлежащие известным элементам, то есть основания предполагать, что этот минерал содержит неизвестный элемент.

Бунзен и Кирхгоф сами продемонстрировали эффективность этого метода. В 1860 г., исследуя линии, которые не принадлежали ни одному из известных элементов. Начав поиски нового элемента, они установили, что это щелочной металл, близкий по своим свойствам натрию и калию. Бунзен и Кирхгоф назвали открытый ими металл цезием (от латинского caesius – “небесно-синий”), так как в спектре этого металла самой яркой была именно эта линия. В 1861 г. эти ученые открыли еще один щелочной металл, который также назвали по цвету его спектральной линии рубидием (от латинского rubidius – “кроваво красный”).

Спектрометр нашел широкое применение и до сих пор используется химиками для определения состава вещества.